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The Mathematics of Designing Good Problems

The

Mathematics

of Designing

Good Problems
Prelude

When launching a topic, we look for problems that come out
“nice” like these:

1. The vertices of a triangle have coordinates For another one, try the
triangle whose vertices are
(of course)
(1248, 436), (1500, 500), (−2340, 1548).(−18, 49), (15,−7), (30,−15)

A strange but nice triangle

How long are the sides?

c© Education Development Center, Inc. 2007 PROMYS 1
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Prelude

2. Find m� Q Want another? Find the
angle opposite the side of
length 21 in a triangle whose
sides have length 9, 24, 21.

3. Find the area of this triangle Want another? Find the
area of the triangle whose
sides have length
91, 222, 205.

A (13, 14, 15) triangle

2 c© Education Development Center, Inc. 2007 PROMYS
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The Mathematics of Designing Good Problems

4. How long is
−→
OA? What if A = (14, 5, 2)?

5. Suppose f(x) = 140 − 144 x + 3 x2 + x3. Find the zeros,
extrema, and inflection points for the graph of f . There’s more where this

comes from. Try

f(x) = −175−45 x+3 x2+x3

f(x) = 140 − 144 x + 3 x2 + x3

c© Education Development Center, Inc. 2007 PROMYS 3
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Getting Started

6. What size cut-out maximizes the volume? Or, suppose the box
measured, say, 9 × 24.

Getting Started

One of the most famous and useful results from Euclidean ge-
ometry is the Pythagorean theorem:

Theorem 1

If a right triangle has legs of length a and b and if its hypotenuse The Greek geometers had a
much more geometric way
of saying this: The square
upon the hypotenuse is
equal to the squares upon
the legs. Draw a picture of
what they were talking
about.

has length c, then
a2 + b2 = c2

Figure 1

7. Describe your favorite proof of the Pythagorean Theorem.

After stating (and perhaps proving) the Pythagorean theo-
rem, most geometry texts contain a few exercises that ask stu-
dents to “solve” right triangles (given two of the three sides,

4 c© Education Development Center, Inc. 2007 PROMYS
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find the third). Sometimes, the solutions are “nice”—the side
lengths are all integers. The most famous such Pythagorean
triple is (3, 4, 5). Of course, a right triangle need not have in- The converse of the

Pythagorean theorem is also
true (proof?) and surveyors
from antiquity knew that if
a triangle has sides in the
ratio of 3 : 4 : 5, it has to be
a right triangle.

tegers for side lengths; if the legs have length 1 and 2, the hy-
potenuse has length

√
5.

One of the oldest “task design” problems is surely the problem
of finding Pythagorean triples.

8. What’s your favorite way to generate Pythagorean triples?

c© Education Development Center, Inc. 2007 PROMYS 5
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1 An algebraic approach

How to Amaze Your Friends at Parties

A Gaussian Integer is a complex number of the form a + bi Remember from last
summer? The system of
Gaussian integers is denoted
by Z[i]. Z[i] has the UFP.
What are the units?

where a and b are integers .

Example: 3 + 2i. Non-example: 1
2

+ i
√

2.

FOR DISCUSSION

Pick your favorite Gaussian Integer (make a > b) and square it.

Why does this work?

Finding Pythagorean triples amounts to finding triples of inte-
gers (a, b, c) so that a2 + b2 = c2. If you are “thinking Gaussian
integers,” the form a2 + b2 should look familiar. It is the norm
of the Gaussian integer a + bi. Just to refresh your memory,
here are the relevant definitions and properties:

All you ever wanted to know about conjugation and . . . but were afraid to ask.

Norm.

1. If z = a+ bi is a Gaussian integer, the “complex conjugate”
of z, written z , is defined by z = a − bi

2. Using this definition, the following properties of conjugation
hold:
(a) z + w = z + w for all Gaussian integers z and w.

6 c© Education Development Center, Inc. 2007 PROMYS
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(b) zw = z w for all Gaussian integers z and w. Most of these statements
make sense for general
complex numbers, not just
Gaussian integers. In fact,
we can say that Z[i]
“inherits” these properties
from C.

(c) z = z ⇔ z ∈ R

(d) z z = a2 + b2, a non-negative integer.

3. The norm of z, written N(z) is defined as the product of z
and its complex conjugate: N(z) = z z .

4. Using this definition, the following properties of norm hold:
Property 4a is often
described by saying “the
norm is multiplicative.”
Norm is also the name of
the guy on Cheers, but he
wasn’t multiplicative.

(a) N(zw) = N(z) N(w) for all Gaussian integers z and w.
(b) N(z) = a2 + b2, a non-negative integer.

1. Prove properties 2 and 4 above.

2. Show that if z is a Gaussian integer, then These properties show how
taking conjugates and norms
behave with respect to the
binary operations in Z[i] and
hence allow you to develop
rules for calculating with
conjugates and norms.

N(z2) = (N(z))2

Notice that the right side of this equation is a perfect square
(it is the square of an integer).

Problem 2 is a key to one of the nicest ways around for gen-
erating Pythagorean triples. The idea goes like this: We’ll look at another nice

way in the next section.

How to generate Pythagorean triples

•The equation a2 + b2 = c2 can be written N(z) = c2 where
z = a + bi. So, we are looking for Gaussian integers whose
norms are perfect squares.

•Problem 2 says that the norm of a Gaussian integer will be
a perfect square if the Gaussian integer is itself a perfect
square.

• So, to generate Pythagorean triples, pick a Gaussian integer
at random, and square it. The square will be a Gaussian
integer a + bi whose norm, a2 + b2 will be a perfect square.
That is, a2 + b2 will equal c2 for some integer c, and (a, b, c)
will be a Pythagorean triple.

3. Generate half a dozen Pythagorean triples in this way.

4. Use the method to establish the following identity that is
often used for generating Pythagorean triples:

(r2 + s2)2 = (r2 − s2)2 + (2rs)2

If your kids don’t know
about Gaussian integers, you
could simply ask them to
prove the identity in
problem 4—a nice exercise
in algebra. But, of course,
that masks where it comes
from in the first place. The
best thing to do is to show
your class the Gaussian
integers. Everyone should
know about it.

c© Education Development Center, Inc. 2007 PROMYS 7
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Why does this work?

Write and Reflect:

5. So, you can use norms of Gaussian integers to generate This is an important
question if you want to see
how much of this technique
leads to a general method
and how much is just a
happy accident.

Pythagorean triples. Explain carefully what properties of
the norm makes this technique work. That is, think of
the norm as a function N : Z[i] → Z. What properties
of this function are essential to our method for generating
Pythagorean triples?

Take it Further. There are some details that need to be taken
care of:

6. This method produces duplicates, and sometimes produces Hint: If N(z) = N(w),
what do you know about z
and w?

negative “legs.” Refine the algorithm so that it produces
only positive triples and produces no duplicates.

7. Even after you eliminate duplicates, there are annoying
triples like (6, 8, 10) that show up and are simple mul-
tiples of a “primitive” triple (this one is twice (3, 4, 5)).
Characterize those z so that z2 will generate a primitive
Pythagorean triple.

8. Use the unique factorization of Z[i] to show that this method
of squaring and taking norms gives all Pythagorean triples.

8 c© Education Development Center, Inc. 2007 PROMYS
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2 A geometric approach

There is another way to generate Pythagorean triples, using the
unit circle and coordinate geometry.

The unit circle

1. What is the equation of the unit circle?

c© Education Development Center, Inc. 2007 PROMYS 9
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2. (a) In the picture in the margin, the line passes through
(0,−1) and has slope 5

2
. What is its other intersection

with the unit circle?
(b) Use the coordinates of P to obtain a Pythagorean

triple.

3. Pick another line with rational slope that passes through
(0,−1) and intersects the unit circle in the first quadrant.
Use this second intersection point to determine another
Pythagorean triple.

4. Prove the following theorem:

Theorem 2

If a line passes through the point (0,−1) and has rational slope “Rational point” means a
point whose coordinates are
rational numbers.

and intersects the unit circle in two points, then its other inter-
section with the unit circle will be a rational point.

5. Suppose you had a rational point P on the unit circle in
the first quadrant. That is, P = (a

d
, b

e
). Use P to find a Why do we want the point

to be in the first quadrant?Pythagorean triple.

6. What slopes for the line in theorem 2 should you use to
get “second” intersection points in the first quadrant?

7. Use theorem 2 to generate several Pythagorean triples.
Will this generate all of them or does it miss some? How
do you know?

8. Suppose a line with slope m intersects the unit circle at
(0,−1) and at P .
(a) Find the coordinates of P in terms of m.

This is sometimes called a
“parametrization” of the
unit circle in terms of m.
Why?

(b) Suppose m is rational, say m = r
s
. Express the

Pythagorean triple you get from P in terms of r and s. Compare with the result of
problem 4 on page 7.

10 c© Education Development Center, Inc. 2007 PROMYS
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3 The Norm Idea: Related

Problems

The problem of finding Pythagorean triples asks for integer sided
triangles with a right angle. A natural generalization is to ask Well, there are equilateral

triangles, but how about
scalene ones? These
certainly exist—look at
problem 2 on page 2. We’re
about to figure out how to
find them.

for integer sided triangles with some other kind of angle. For
example, are there any triangles with integer side lengths and a
60◦ angle?

Suppose there were.

Figure 2: Integer side
lengths, m � C = 60◦

In the case of a right triangle, the Pythagorean theorem gave
us a relationship among the three sides (a2 + b2 = c2). In a
triangle where � C is not a right angle, a2 + b2 is not the same
as c2, but there is a theorem that generalizes Pythagoras and
tells us how the sides are related:

c© Education Development Center, Inc. 2007 PROMYS 11
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Theorem 3

The law of cosines If the sides of a triangle are labeled as in
figure 3

Figure 3

then c2 = a2 + b2 − 2ab cos C.
Here, “C” means the
measure of � BCA.

1. Describe your favorite proof of the Law of Cosines. There are many proofs of
the law of cosines that are
appropriate for second year
algebra students. Try to find
one that you could use in a
geometry class.

2. In what sense is the law of cosines a generalization of the
Pythagorean theorem?

So, let’s go back to figure 2:

Figure 2: Integer side
lengths, m � C = 60◦

By the law of cosines,

c2 = a2 + b2 − 2ab cos 60◦

= a2 + b2 − 2ab · 1
2

= a2 + b2 − ab

So, finding the kind of triangles we want amounts to finding
triples of integers (a, b, c) so that a2 − ab + b2 = c2. Just as
before, we are looking for a, b ∈ Z so that a2 − ab + b2 is a
perfect square.

12 c© Education Development Center, Inc. 2007 PROMYS
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Well, there is another number system that you met last sum-
mer, that has a structure very similar to Z[i], and that has a
norm function that will do the trick for us. Here’s how it works.
Suppose that How would one even know

to look at Z[ω]? Good
question. See the appendix
on page 22. Notice that
i4 = 1 and ω3 = 1, so i and
ω are both “roots of unity.”

ω =
−1 + i

√
3

2

ω is a root of the equation x2 + x + 1 = 0. We can construct
the subring of the complex numbers

Z[ω] = {a + bω | a, b ∈ Z}

Since ω2 + ω + 1 = 0,

ω2 = −1 − ω

so you can calculate like this:

•You add the elements in the usual way:

(3 + 4ω) + (5 + 7ω) = 8 + 11ω

•You multiply the elements in the usual way and then replace
ω2 by −1 − ω.

(3 + 4ω)(5 + 7ω) = 15 + 41ω + 28ω2

= 15 + 41ω + 28(−1 − ω)
= −13 + 13ω

This shows that Z[ω] is closed under addition and multiplica-
tion.

3. Show that
(a) ω2 = ω
(b) ω3 = 1
(c) (a + bω)(a + bω) = a2 − ab + b2

Problem 3c is our ticket to the 60◦ triangle problem. Note
that Justify each step? Try it.

N(a + bω) = (a + bω)
(
a + bω

)

= (a + bω)
(
a + bω

)

= (a + bω)
(
a + b ω

)

= (a + bω) (a + b ω)
= a2 − ab + b2

c© Education Development Center, Inc. 2007 PROMYS 13
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So, the thing we want to make a perfect square is the norm The norm is still
multiplicative, becuase it is
multiplicative on all of C. It
is multiplicative on all of C

because it is defined by
N(Z) = zz (see problem 4
on page 7).

of one of these funny new numbers. But the norm is still mul-
tiplicative, so, to make the norm a square, make the thing a
square.

EXAMPLE

Start with z = 3 + 2ω. Square it:

z2 = (3 + 2ω)2

= 9 + 12ω + 4ω2

= 9 + 12ω + 4(−1 − ω) (Don’t forget: ω2 = −1 − ω)
= 5 + 8ω

So, arguing as before,

52 − 8 · 5 + 82 = N(5 + 8ω)
= N ((3 + 2ω)2)

= (N(3 + 2ω))2

= 72

and voilà:
52 − 5 · 8 + 82 = 49 a perfect square!

So the triangle whose sides have length 5, 8, and 7 has a 60◦ angle.

Or, a triangle with sides of
length 5 and 8 and an
included angle of 60◦ has a
third side of length 7.

A (5, 8, 7) triangle
has a 60◦ angle

14 c© Education Development Center, Inc. 2007 PROMYS
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Historical Perspective

We like to call triples of integers (a, b, c) Eisenstein triples if

a2 − ab + b2 = c2

George Eisenstein, a student of Gauss, was very fond of the ring Z[ω]. Remember: ω3 = 1.
Eisenstein was very
interested in roots of the
equation xn − 1 where
n ∈ Z

+.

Eisenstein also devised a beautiful proof of quadratic reciprocity (the
one used in PROMYS). When asked to name the three greatest math-
ematicians of all time, Gauss replied “Archimedes, Newton, and Eisen-
stein.” It was one of the few times in his life when Gauss was wrong. The
correct answer is, of course, “Archimedes, Newton, and Gauss.”

4. Find three other triangles with one 60◦ angle and inte-
ger sidelengths. Are there infinitely many such triangles?
Prove it.

5. Use the method of norms to establish the following identity If your kids don’t know
about Z[ω], you could
simply ask them to prove
this identity—a nice exercise
in algebra. But, of course,
that masks where it comes
from in the first place. The
best thing to do is to show
your class Z[ω]. Everyone
should know about it.

that is often used for generating Eisenstein triples:

(r2−s2)2−(r2−s2)(2rs−s2)+(2rs−s2)2 = (r2−r s+s2)2

Take It Further

6. Will this method generate all Eisenstein triples? Hint: Z[ω] has the UFP, but
there are six units.
Remember what they are?7. Find a triangle whose sides have integral length and so

that one angle has a cosine of 3
5
. Are there infinitely many

such triangles? Prove it.

8. Can you find a triangle with a 45◦ angle and integer side-
lengths? Try the same method, and find three such trian-
gles or explain what goes wrong.

9. Under what conditions on θ will a method like this allow
you to generate integer-sided triangles with one angle mea-
suring θ?

c© Education Development Center, Inc. 2007 PROMYS 15
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4 The Intersection Idea:

Related Problems

When you wanted to find triples where a2 + b2 = c2, you used
the graph of x2 +y2 = 1 (the unit circle) to generate them. Now
look back at the problem of finding triangles with integer sides
and one 60◦ angle. You want triples where a2 − ab + b2 = c2.
Could you use a similar geometric approach to generate them?

1. If you have a rational point on the graph of x2−xy+y2 = 1,
can you use it to find the integer-sided triangle you are
looking for? Prove it.

2. Graph x2 − xy + y2 = 1. What kind of object is it?

3. Prove the following theorem: We think the proof of this
theorem involves a great
deal of “reasoning about
calculations.” Do you?

Theorem 4

If a line passes through the point (0,−1), has rational slope, and
intersects the graph of x2 − xy + y2 = 1 in two points, then its
other intersection will be a rational point.

4. Use theorem 4 to find several triangles with one 60◦ angle
and integer sidelengths.

5. Suppose a line with slope m intersects the curve with equa-
tion x2 − xy + y2 = 1 at (0,−1) and at P .
(a) Find the coordinates of P in terms of m.

This is sometimes called a
“parametrization” of the
ellipse in terms of m. Why?

(b) Suppose m is rational, say m = r
s
. Express the Eisen-

stein triple you get from P in terms of r and s. Compare with the result of
problem 5 on page 15.

16 c© Education Development Center, Inc. 2007 PROMYS
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Take It Further

6. Use this method to find a triangle whose sides have integral
length and so that one angle has a cosine of 3

5
. Are there

infinitely many such triangles? Prove it.

7. Can you use this method to find a triangle with a 45◦

angle and integer sidelengths? Try it, and find three such
triangles or explain what goes wrong.

8. The problem of finding a triangle with integer sides and one
angle θ comes down to finding the right conic section C.
Express the equation of C in terms of θ and give a condition
that θ and C have to meet in order for this problem to have
a solution.

Write and Reflect:

9. Compare the “norm equation” and the “secant and conic”
method for finding integer sided triangles with prescribed
angles. Are they equivalent?

c© Education Development Center, Inc. 2007 PROMYS 17
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5 What’s Your Favorite

Task-design Problem?

So, that’s the story for today. The two methods—norms from
appropriate number systems and finding rational points on conics—
are two general-purpose methods for building nice problems for
a wide array of middle and high school topics.

Try out one of these methods, or anything else you want to
use, on a task-design problem of your own.

PROBLEM

Describe a task-design problem you’ve wondered about in your teaching.
Use the norm or conic method (or anything else) to solve it.

For your enjoyment. Just in case you need some inspiration,
here are some examples. Stop! Don’t read the

examples until you’ve
thought about a problem of
your own.

1. (From calculus.) Every calculus course has box problems:
A rectangle measures 7 × 15. Little squares are
cut out of the corners, and the sides are folded up
to make a box. Find the size of the cut-out that
maximizes the volume of the box.

The real box problem is this:
A rectangle measures a × b. Little squares are cut
out of the corners, and the sides are folded up to
make a box. Find a method to generate a and b
if we insist that the size of the cut-out that maxi-
mizes the volume of the box is a rational number.

Use today’s methods to solve the real box problem.

18 c© Education Development Center, Inc. 2007 PROMYS
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2. (From geometry.) Pythagorean triples can be used to find
a lattice points in the plane that is an integer distance
away from the origin (how?). Find some lattice points in
Z

3 that are integer distances away from the origin.

3. (From algebra 1.) Bowen Kerins and David Offner (two
illustrious PROMYS alumns) taught a 3-week course for
high school teachers at PCMI last summer. The course was The course was designed by

Bowen, Ryota, David,
Michelle, and Tanya.

entitled “Applications of Gaussian Integers and Related
Systems to Secondary Teaching.” The teachers at PCMI
worked on several task-design problems. One of them is
described by Bowen like this:

The group also focused on a few standard types of
problems seen in algebra; in particular, the group
found an excellent method to generate problems
collectively known as “current” or “wind” prob-
lems like this one:

A boat is making a round trip, 135 miles
in each direction. Without a current, the
boat’s speed would be 32 miles per hour.
However, there is a constant current that
increases the boat’s speed in one direction
and decreases it in the other. If the round
trip takes exactly 9 hours, what is the speed
of the current?

Notice that the answer to this problem is something like
“8,” not “3+

√
37

2
.” How’d they do that?

4. (From geometry.) Heron’s formula shows how to find the
area of a triangle in terms of the lengths of its sides. A Heron: If the sidelengths of

a triangle are a, b, and c, its
area is
1
2

√
s(s − a)(s − b)(s − c)

where s is half the
perimeter. Proof?

“Heron triangle” is a triangle with integer sidelengths and
integer area. Use the methods of this section to find some
Heron triangles.

5. (From analytic geometry.) Find three points A, B, and C
in the plane so that
• the coordinates of A, B, and C are integers and The identity

(r2+s2)2 = (r2−s2)2+(2rs)2

from page 7 holds in any
commutative ring.

• the distance between any two of the three points is an
integer.

6. (From precalculus.) How do you generate cubic polyno-
mial functions with integral coefficients, with three ratio-
nal zeros, two rational extrema, and one rational inflection
point? No cheating: the six rational points must all be
distinct.

c© Education Development Center, Inc. 2007 PROMYS 19
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Hints:
Let’s handle a special case of the “depressed” monic “Monic” means that the

leading coefficient is 1.
“Depressed” means that the
coefficient of x2 is 0 (maybe
the cubic feels depressed
because it’s missing a term).
Given any monic cubic,
x3 + bx2 + cx + d, replacing
x by x − b

3
will depress it

(this translates the graph to
a symmetry point), so this
isn’t really a serious
constraint.

cubic
f(x) = x3 + cx + d

This setup insures that f ′′ has a rational root (namely
0). f ′ will have rational roots if we put c = −3q2

for some integer q. So, now our function is

f(x) = x3 − 3q2x + d

If f has two rational roots, it has three (because
the product of all three roots is rational), so it’s
enough to make two roots, say, −α and β, rational.
But if f(−α) = f(β) = 0, we have

−α3 + 3q2α = β3 − 3q2β

or
β3 + α3 = 3q2(α + β)

Since α + β �= 0 (we want our roots distinct), this
is the same as

α2 − αβ + β2 = 3q2

or
N(α + βω) = 3q2

where ω = −1+i
√

3
2

. Look familiar now?

Take it Further A congruent number is an integer n such that
there is a right triangle with rational sidelengths and area n.

Notice that the sides in the right triangle need only be rational
(not integral). So, the area of any triangle whose sides form a
Pythagorean triple is a congruent number, but not all congruent
numbers are obtained this way. For example, 157 is a congruent
number, because the (right) triangle whose sides are

224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830
,

The calculations here were
made by Don Zagier. How
in the world do you think he
did it?

6803294847826435051217540

411340519227716149383203
, and

20 c© Education Development Center, Inc. 2007 PROMYS
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411340519227716149383203

21666555693714761309610
has area 157.

7. Show that 5 and 6 are congruent numbers but that 4 is The fact that 4 is not a
congruent number can be
used to show that there are
no integers (x, y, z) all
non-zero such that
x4 + y4 = z4, a special case
of Fermat’s last theorem.

not.

8. Show that n is a congruent number if and only if there
exists a rational number x so that x2 + n and x2 − n are
squares of rational numbers.

9. Find a way to generate congruent numbers.

Determining all congruent numbers is an unsolved problem.
In the middle of the last (20th) century, Heegner (a high school
teacher in Germany) applied powerful techniques from analytic
number theory to the congruent number problem, setting a new
direction for research on the topic. A detailed account of what
is known is in the book Introduction to Elliptic Curves and Mod-
ular Forms by Neal Koblitz (Springer-Verlag, 1993).
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Appendix: What if you didn’t know about Eisenstein
integers?

Suppose we were working on the 60◦ problem, and we wanted
to employ the norm idea, but we didn’t know about ω. How in
the world would someone know that the right system to use is
Z[ω]. Through some wishful thinking. Here’s how:

If a2−ab+b2 were the “norm” of something, and if that norm
function behaved like the ordinary norm from the Gaussian in-
tegers (in particular, if the norm of a product were the product
of the norms), then we’d be able to use the same method: Take
a thing, square it, and then its norm would

• have the right form (a2 − ab + b2) and

• be a perfect square.

Well, this is not the norm of a + bi, but suppose it were
the norm of a + bω for some complex number ω. Let’s work
backwards and see if we could figure out what ω would have to
be. Remember, the norm is the product of the number and its
conjugate, so, if a and b are integers,

N(a + bω) = (a + bω)
(
a + bω

)

= (a + bω)
(
a + bω

)

= (a + bω)
(
a + b ω

)

= (a + bω) (a + b ω)
= a2 + ab(ω + ω) + b2(ω ω)

and if we want this to be a2 − ab + b2, then we want As usual, justify each step in
the above calculation.

ω + ω = −1 and
ω ω = 1

Well, that pretty much nails ω down: we know the sum of ω
and its complex conjugate (it’s −1) and we know the product
ω ω (it’s 1). So, ω is a root of the quadratic equation

x2 + x + 1 = 0

This is because of the old chant from high school:

x2 − (the sum of the roots) x + (the product of the roots) = 0
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Using the quadratic formula, we can take ω to be

ω =
−1 + i

√
3

2

and we can now generate as many triples of integers (a, b, c) so The other root is then
ω = −1−i

√
3

2
. That will

work, too.
that c2 = a2 − ab + b2 as we like.
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